

NPL Good Practice Guide and future standards for Graphene

Charles Clifford Surface Technology Group, National Physical Laboratory, UK charles.clifford@npl.co.uk

NPL: Who are we

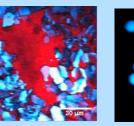
The UK's national standards laboratory world-leading National Measurement Institute

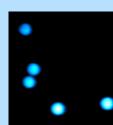
~750 staff; State-of-the-art laboratory facilities

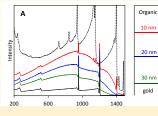
Critical importance of **Partnership** with industry and academia

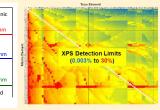
New model - NPL operates as a government company, wholly owned by BEIS (business dept).

We provide confidence in measurement with independence integrity and impartiality, and accelerate the application of Science & Technology

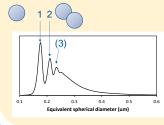

Surface Technology Group

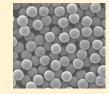





Surface Chemical Analysis

Improved methods for surface analysis: XPS, UPS, AES, SIMS, ISS, AFM, TERS


Real Time, in-situ Chemical Imaging


Raman spectroscopy and imaging, stimulated Raman and non-linear optical imaging

Nanoparticle Analysis

Accurate and novel methods for particle size, concentration, chemistry and structure

Graphene and 2D Materials

Supporting industrial uptake of novel materials: accurate and practical measurements

Graphene at NPL

- NPL has 20+ scientists and engineers working on 2D material related projects (and 10+ students)
- Improved access for Industry, Academia and Government to 2D material capability across NPL:
 - Characterisation
 - Metrology for Graphene
 - Graphene for Metrology
 - Standardisation
 - Quality Control

- Different properties of materials require different approaches
- Formalised strategic partnering with key organisations

What is a standard?

A standard is a ...

'document, established by consensus and approved by a recognized body, that provides, for common and repeated use, rules, guidelines or characteristics for activities or their results, aimed at the achievement of the optimum degree of order in a given context'

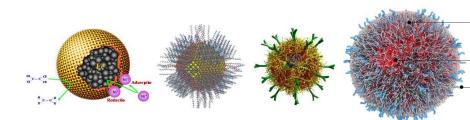
(ISO/IEC Guide 21-1:2005, 3.1)

International Organization for Standardization

ISO TC 201 Surface Chemical Analysis ISO TC 229 Nanotechnologies

Pre-standardisation interlab testing

VAMAS TWA2 - Surface chemical analysis
VAMAS TWA34 - Nanoparticle populations
VAMAS TWA41 - Graphene
VAMAS TWA42 - Raman

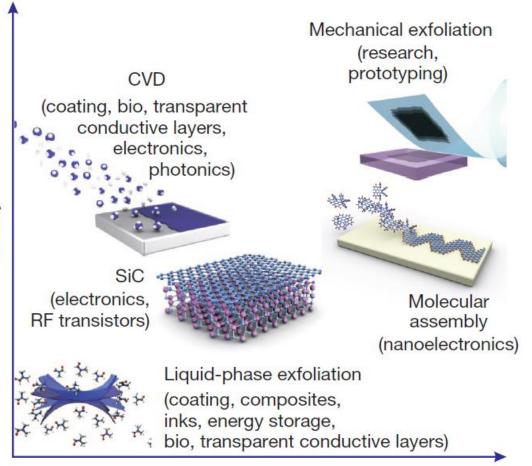

Industrial Developments in Nano

High Volume, low Cost

 Production volume can outstrip application need

- Race to the lowest price
- Leads to poor quality
- Garbage in, Garbage out
- Standards necessary for quality and assurance !

- Particle properties tailored to application
- Highly specific size, shape, chemistry, surface chemistry
- Need Standards!


Highly specialised

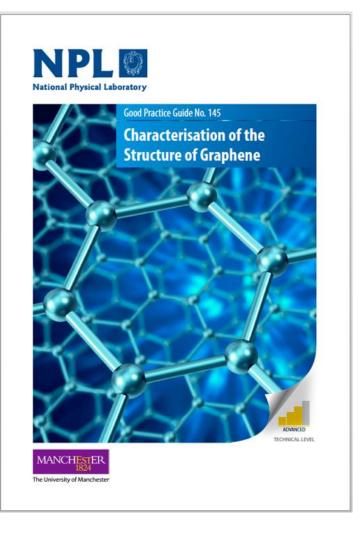
Graphene and related 2D Material Production

Quality

- Many different ways of producing graphene
- Difference:
 - Scalability
 - Dimensions
 - Level of disorder/defects ('quality')
 - Cost
 - Application
 compatibility
- Can be separated into two groups
 - Graphene on a substrate
 - Graphene
 powder/dispersion

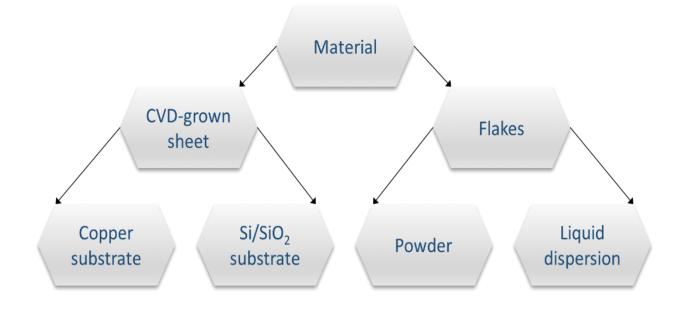
Price (for mass production)

What is this stuff?!



DerHexer, Wikimedia Commons, CC-by-sa 4.0 www.davidkelly.me

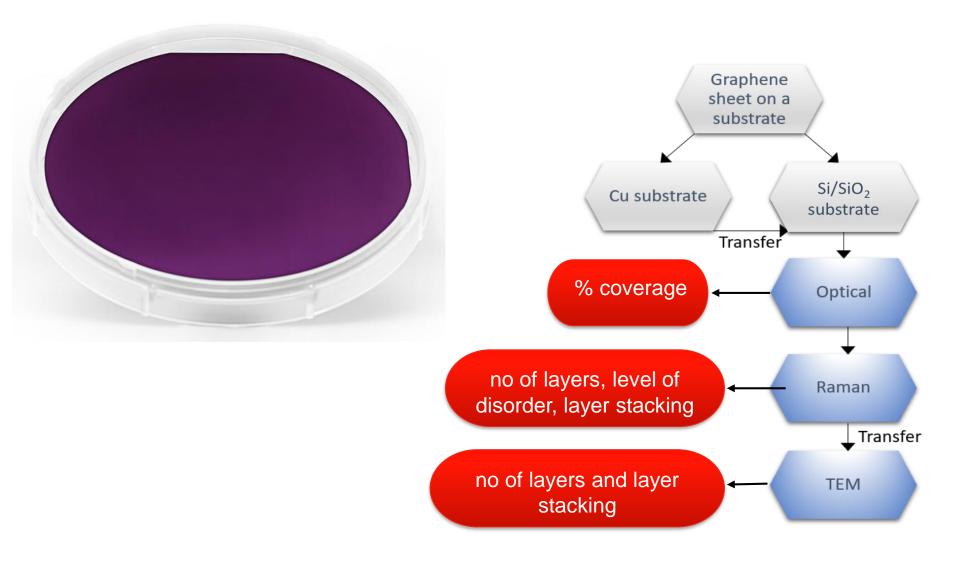
NPL Good Practice Guide

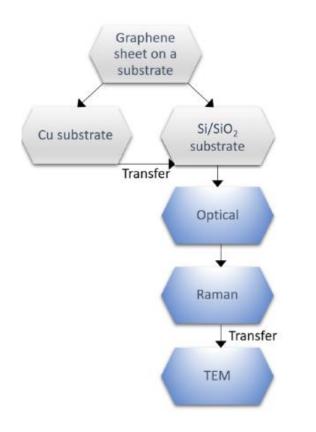

- Joint NPL and NGI (University of Manchester)
- Technique, issues, protocol, data analysis
- Optical, Raman, SEM, TEM, AFM,

www.npl.co.uk/graphene-guide

- GPG can be used as interim source of measurement protocols as international standard developed
- Will be used as basis for standards

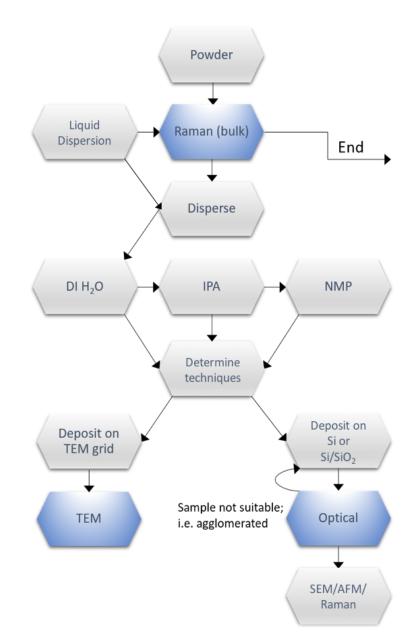
Type of material





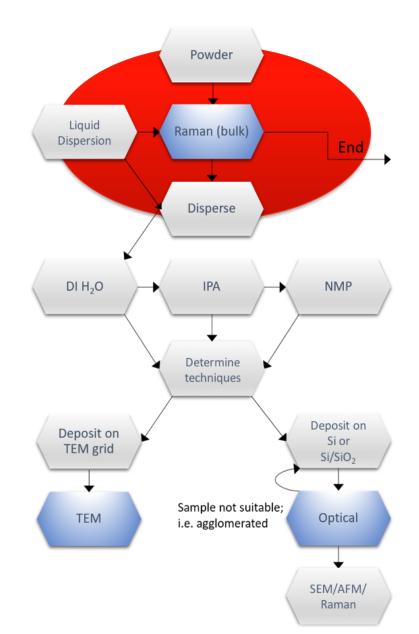
CVD-grown Graphene

Future possible PWI 21356-2 Structural Characterisation of CVD grown Graphene

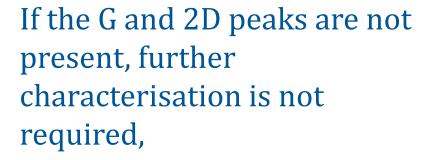


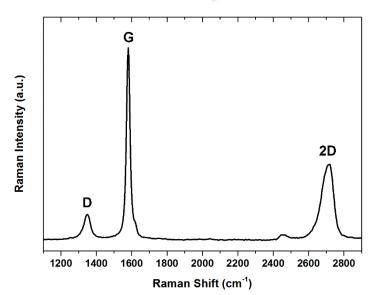
- Proposal led by UK (C Clifford, A Pollard)
- order of methods for characterising the structural properties of CVD grown graphene
- Methods: Optical microscopy, Raman and TEM
- Properties covered: % coverage, number of layers (thickness), level of disorder, layer stacking
- Measurement protocols, sample preparation routines and data analysis given.
- Currently out for ballot to see whether it should become a provisional work item
- Your support and input are welcome!

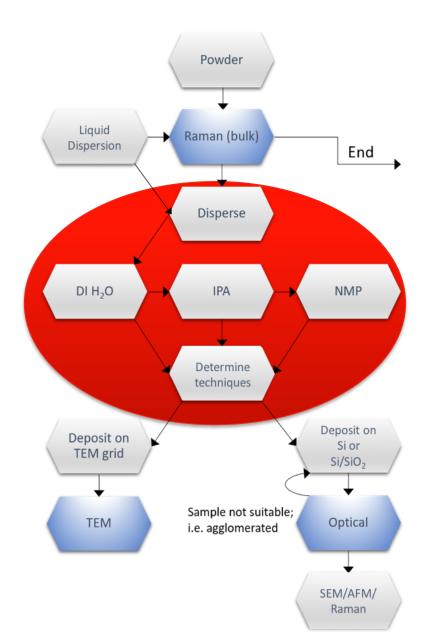
Powders/Dispersions



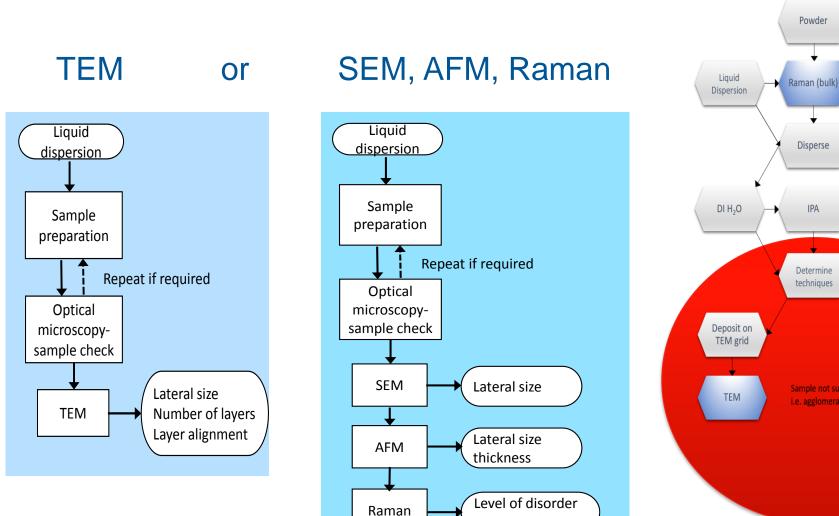
Powders/Dispersions

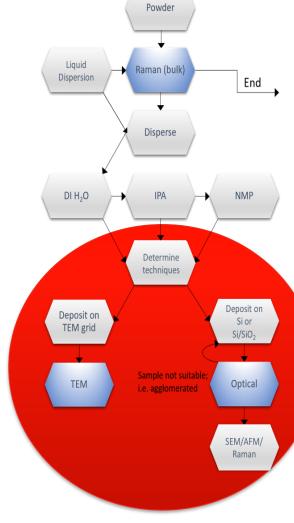



Quick Check - Raman

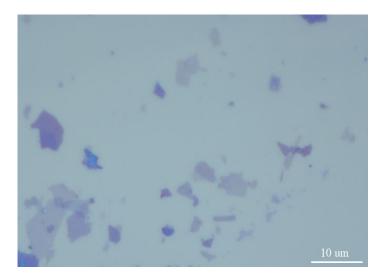


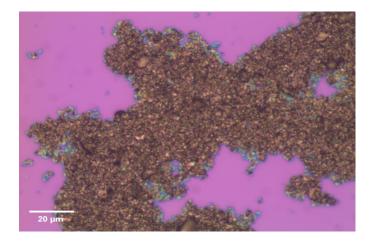
Powders/Dispersions

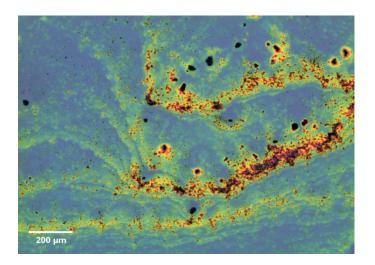




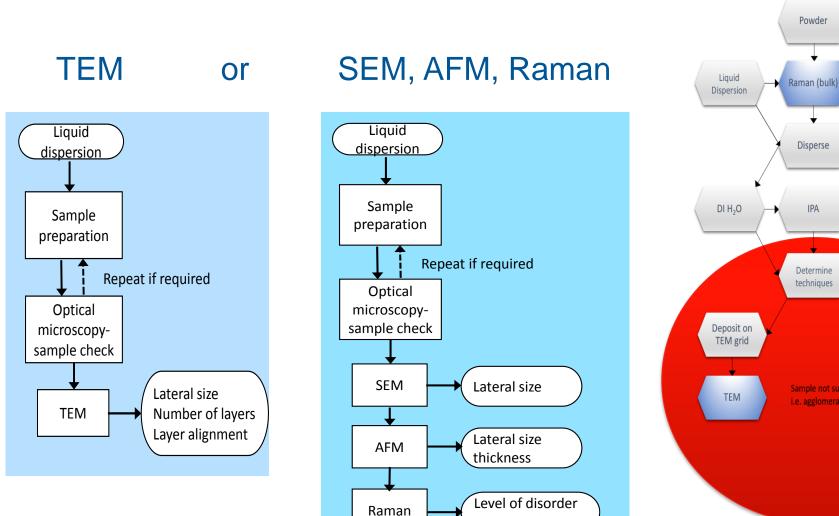
Powders/Dispersions

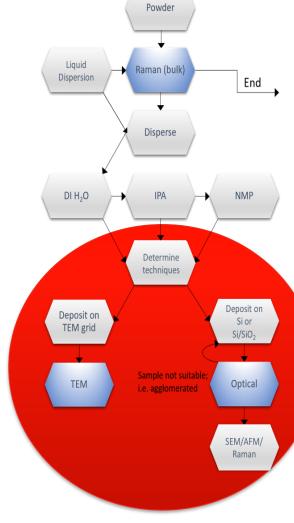

Number of layers


Optical Check

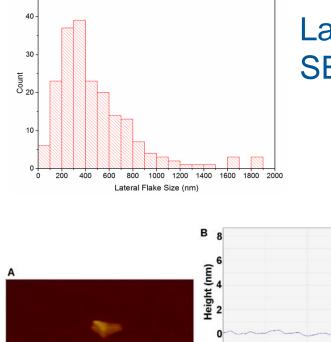


Before microscopy (here SEM) to check sample prep

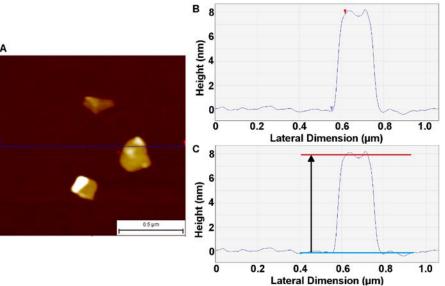

The Good, the Bad and the Ugly



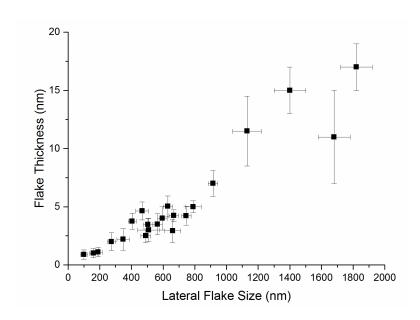
Powders/Dispersions



Number of layers

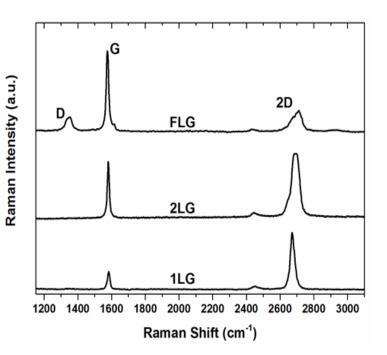


SEM and **AFM**

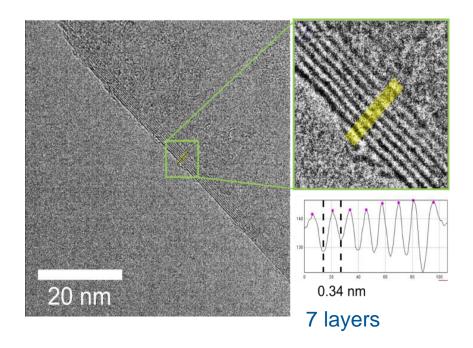


Lateral Flake Size SEM, at least 200 flakes

Flake thickness using AFM

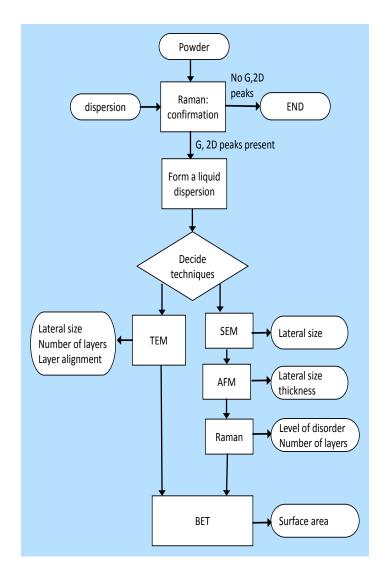


Flake thickness vs lateral flake size from AFM


Number of layers

Raman

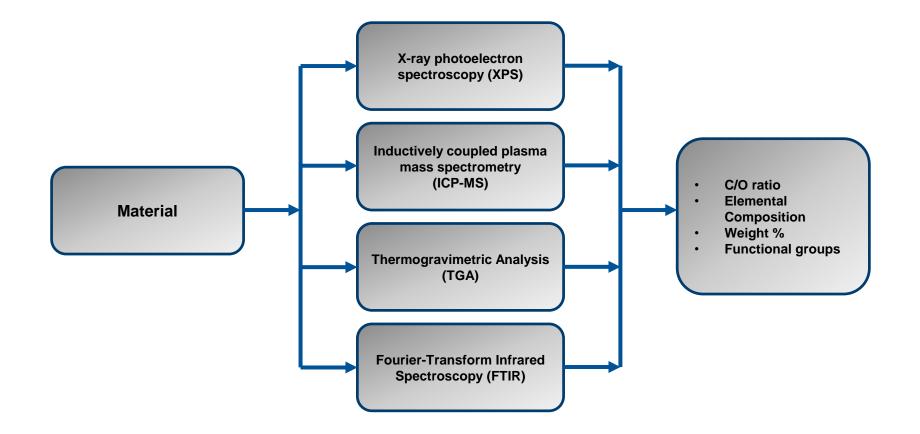
TEM



Peak intensity ratio determines no of layers

Simple, quick

Count the layers on the edge! Time consuming, expensive


ISO PWI 21356-1 Structural Characterisation of Graphene from powders and dispersions

- Led by UK (C Clifford, A Pollard)
- order of methods for characterising the structural properties of graphene from powders and dispersions
- properties covered are the number of layers (thickness), lateral flake size, the level of disorder, layer stacking and specific surface area. Suggested measurement protocols, sample preparation routines and data analysis given.
- Currently out for New work item ballot
- Technical experts and comments requested

Nanotechnologies -- Chemical characterisation for graphene in powders and suspensions

Provisional work item led by UK (C Clifford and China (LL Ren) Include sample preparation, protocols and data analysis

VAMAS Interlaboratory Studies Pre-standardisation

Caterina Minelli, Alex Shard, Charles Clifford

Graphene Interlaboratory Studies

- New VAMAS TWA 41: 'Graphene and Related 2D Materials'
- Aim: Validate different methodologies of measurement for graphene and related 2D materials. Determining the uncertainties associated in measurement, sample preparation, and data analysis. Interlaboratory studies will be conducted and the results will form the basis for future standardisation.
- Contact:

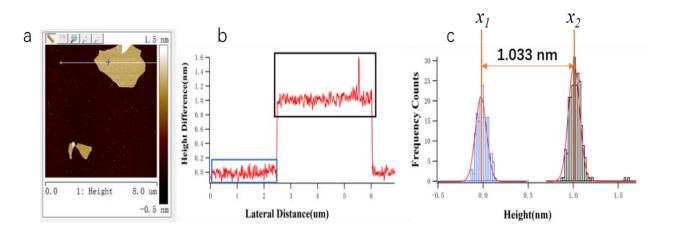
Dr. Lingling Ren Dr. Andrew Pollard renll@nim.ac.cn andrew.pollard@npl.co.uk

VAMAS: Raman of CVD graphene

Based on NPL GPG protocol Led by A Pollard, NPL Measuring: no of layers, layer stacking/alignment, level of disorder. Launching: summer/autumn 2018

VAMAS: Chemical Composition of Graphene & GO Flakes by XPS:

Elemental analysis, oxygen content and C:O ratio

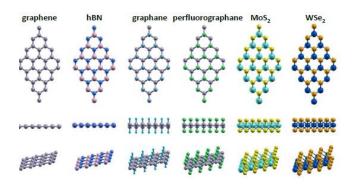

- Led by LingLing Ren, NIM, China
- 3 types of graphene/graphene oxide samples to be tested
- contents of carbon (C), oxygen (O), sulfur (S), chlorine (Cl) and nitrogen (N) elements
- C:O ratio

VAMAS: thickness measurements of Graphene Oxide flakes using AFM

Using Graphene oxide Measurand – Flake thickness and hence no of layers

- Led by NIM, China
- Protocol and procedure still being refined.....

Terminology


TS 80004-13 -Nanotechnologies -- Vocabulary --Part 13: Graphene and related two dimensional materials

Published September 2017

99 Terms and definitions:

- related to materials
- methods for producing 2D materials
- characterizing 2D materials
- 2D materials characteristics

Freely available on ISO OBP

2D materials Terminology Standard NPL

3.1.1.1

two-dimensional material

2D material

material, consisting of one or several layers with the atoms in each layer strongly bonded to neighbouring atoms in the same layer, which has one dimension, its thickness, in the nanoscale or smaller and the other two dimensions generally at larger scales

Note 1 to entry: The number of layers when a two-dimensional material becomes a bulk material varies depending on both the material being measured and its properties. In the case of graphene layers, it is a two-dimensional material up to 10 layers thick for electrical measurements, beyond which the electrical properties of the material are not distinct from those for the bulk [also known as graphite]. Note 2 to entry: Interlayer bonding is distinct from and weaker than intralayer bonding.

Note 3 to entry: Each layer may contain more than one element.

Note 4 to entry: A two-dimensional material can be a nanoplate.

3.1.2.1

graphene

graphene layer

single layer graphene

monolayer graphene

single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure

Note 1 to entry: It is an important building block of many carbon nano-objects.

Note 2 to entry: As graphene is a single layer, it is also sometimes called monolayer graphene or single layer graphene and abbreviated as 1LG to distinguish it from bilayer graphene (2LG) and few-layered graphene (FLG).

Note 3 to entry: Graphene has edges and can have defects and grain boundaries where the bonding is disrupted.

3.1.2.10

few-layer graphene

FLG

two-dimensional material consisting of three to ten well-defined stacked graphene layers

3.1.2.13

graphene oxide

GO

chemically modified graphene prepared by oxidation and exfoliation of graphite, causing extensive oxidative modification of the basal plane

Note 1 to entry: Graphene oxide is a single-layer material with a high oxygen content, typically characterized by C/O atomic ratios of approximately 2,0 depending on the method of synthesis.

4 Abbreviated terms

1L	monolayer/single-layer
1LG	monolayer/single-layer graphene
2D	two-dimensional
2L	bilayer
2LG	bilayer graphene
3L	trilayer
3LG	trilayer graphene
CVD	chemical vapour deposition
FL	few-layer
FLG	few-layer graphene
GNP	graphene nanoplatelet
GO	graphene oxide
hBN	hexagonal boron nitride
rGO	reduced graphene oxide

Summary

- NPL Good Practice Guide on measurement of graphene structure now published
- Many standards currently in development with activity growing
- Graphene Measurements Standards being developed
- Graphene Terminology Standard now published
- Interlaboratory comparisons through VAMAS

Alex Shard, Andrew Pollard, Keith Paton, Elizabeth Legge, Barry Brennan from NPL

University of Manchester: Antonios Oikonomou, Sarah Haigh, Cinzia Casiraghi

ISO TC229 experts

FUNDED BY BEIS

DTR 19733 Matrix of properties and measurement techniques for graphene and related 2D materials

Led by Korea (Clare Byeon) and USA (A Hight- Walker)

Prope	Techniques orties	MFM	KPFM	BET	EPMA	ESR (EPR)	ICP-MS	ILEEM	Optical Microscopy	Raman	UV-VIS-NIR Spectroscopy	SEM	SMIS	STM	TEM	SdN	SdX	TGA	Combustion	Titration	4-point Porbe	Hall Bar
	Number of Layers	0						0	0	0	0				0							
	Thickness	0						0							0							
Structural	Stacking Angle									0				0	0							
	Flake Size	0							0	0		0			0							
	Domain (grain) Size	0							0	0	0			0	0							
	Surface Area			0							0											
	Crystal Defect	Ō			Ō	Ō				Ō		Ō		Ō	Ō							
Chemical	Non-Graphene Contents & Residue									0			0				0	0	0			
Chemical	Oxygen Contents				0								0				0	0		0		
	Metal Contents				0		0						0				0					
Mechanical	Modulus	0								0												
Thermal	Thermal Conductivity									0												
Optical	Transmittance								0		0											
	Sheet Resistance																				0	\bigcirc
Electrical/	Mobility																				0	\bigcirc
Electronic	Charge Carrier Concentration		0																		0	0
	Work Function		0													0						

Draft technical report

Properties and techniques described

Currently out for DTR ballot (closes end April)

VAMAS Roadmap

 Series of structural characterisation projects over the next 7 years.

TWA 41: Structural Roadmap		Early 2017	Mid 2017	Late 2017	Early 2018	Mid 2018	Late 2018	Early 2019	Mid 2019	Late 2019	Early 2020	Mid 2020	Late 2020	Early 2021	Mid 2021	Late 2021	Early 2022	Mid 2022	Late 2022	Early 2023	Mid 2023	Late 2023	Early 2024	Mid 2024	Late 2024
Project Description	Leader																								
Raman characterisation of a sheet	NPL															_		_				_	_		
TEM characterisation of a sheet	?																						_	_	
TEM characterisation of flakes	?					_																	_	_	_
SEM and AFM characterisation of flakes	NPL														_	-	-	_				_	_	_	_
Raman characterisation of flakes	?	1																				_	_	_	
BET measurements of flakes	?																						_		
Quality Control Techniques *TBC*	?																								

VAMAS Roadmap

 Chemical characterisation projects that will lead to chemical characterisation ISO standards

TWA 41: Chemical Roadmap		Early 2017	2102 PW	Late 2017	Early 2018	Mid 2018	Late 2018	Early 2019	Mid 2019	Late 2019	Early 2020	0202 bit	Late 2020	Early 2021	1202 bit	Late 2021	Early 2022	2202 PW	Late 2022	Early 2023	6202 PW	Late 2023	Early 2024	Mid 2024	Late 2024
Project Description	Leader																								
XPS characterisation of flakes	NCNST											_			_	_	_								
ICP-MS of flakes	NCNST																								
FTIR of flakes	?																								
TGA of flakes	?																								
Ion Chromatography of flakes	?			_	_									_											
ICP-MS of sheet	?																								
FTIR of sheet	?																								
XPS of sheet	?					_			-																
Surface acidity/ Titration of surface functional groups	?			_						-	-														
Quality Control Techniques?	?																								

Nanotechnology Standardisation

International Standardization Committees

	Committee	When Founded	Membership	Developed Standards	Standards ² under development
ISO	ISO/TC 229 Nanotechnologies	2005	37 Participating countries14 Observing countries	52	42
cen	CEN/TC 352 Nanotechnologies	2005	34 Countries	14	13
	IEC TC 113 Nanotechnology for electrotechnical products and systems	2006	15 Participating countries 19 Observer countries	27	37
ASTMINTERNATIONAL	ASTM International TC E56 Nanotechnology	2005	Over 180 members	18	8

^[1] ISO - International Organization for Standardization, CEN - The European Committee for Standardization, IEC - International Electrotechnical Commission ^[2] Term "standard" used here includes technical reports, technical specifications and standard test methods.